Comparison of stably expressed rat UGT1.1 and UGT2B1 in the glucuronidation of opioid compounds.

نویسندگان

  • C D King
  • G R Rios
  • M D Green
  • P I MacKenzie
  • T R Tephly
چکیده

Opioids are important drugs used as analgesics, antitussives, antidiarrheals, and in the therapy of myocardial infarctions, and as antagonists of opioid intoxication. The glucuronidation of these compounds, catalyzed by UDP-glucuronosyltransferases (UGTs), is well known to be a primary step in their metabolism to hydrophilic products and in their ultimate excretion. The present study was designed to compare the reactivity and relative glucuronidation efficiencies of opioid agonists, antagonists, and partial agonists with two rat UGT isoforms; UGT1.1, which is generally considered the "bilirubin UGT," and UGT2B1, which has previously been shown to catalyze the glucuronidation of testosterone, chloramphenicol, and (-)-morphine. Rat UGT2B1, stably expressed in HK293 cells, exhibited high glucuronidation rates and catalytic efficiencies for many opioids, although values for (-)-morphine and nalorphine were the highest. In contrast, these compounds were very poor substrates for expressed rat UGT1.1. Comparably high glucuronidation rates and efficiencies were found for buprenorphine and diprenorphine with both UGT isoforms. These results suggest that opioids with morphinan-based chemical structures similar to (-)-morphine interact with UGTs differently than those with oripavine-based chemical structures similar to buprenorphine. To investigate the contribution of rat UGT1.1 and UGT2B1 in the overall rate of glucuronidation of buprenorphine in the rat liver, hepatic microsomes from Gunn rats (where UGT1.1 activity is absent) and Wistar rats (where UGT1.1 activity is present) were studied. Buprenorphine glucuronidation activity in Gunn rat liver microsomes exhibit approximately 25% of rates observed in Wistar rat liver microsomes, whereas (-)-morphine, naloxone, and naltrexone glucuronidation rates were not significantly different in microsomal preparations from Gunn and Wistar rats. These data suggest that UGT2B1 is the major hepatic enzyme involved in the glucuronidation of (-)-morphine and naloxone in livers from untreated rats, whereas buprenorphine glucuronidation is preferentially catalyzed by rat UGT1.1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-glucuronidation of perfluorooctanesulfonamide by human, rat, dog, and monkey liver microsomes and by expressed rat and human UDP-glucuronosyltransferases.

N-Alkylperfluorooctanesulfonamides have been used in a range of industrial and commercial applications. Perfluorooctanesulfonamide (FOSA) is a major metabolite of N-alkylperfluorooctanesulfonamides and has a long half-life in animals and in the environment and is biotransformed to FOSA N-glucuronide. The objective of this study was to identify and characterize the human and experimental animal ...

متن کامل

Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDP-glucuronosyltransferase, UGT2B1, in the rat liver.

Bisphenol A, an environmental oestrogenic chemical, was found to conjugate highly with glucuronic acid in male rat liver microsomes studied in vitro. In the various isoforms tested (1A1, 1A3, 1A5, 1A6, 1A7 and 2B1), glucuronidation of bisphenol A and of diethylstilboestrol, a synthetic crystalline compound possessing oestrogenic activity and known to be glucuronidated by liver microsomes, was c...

متن کامل

Glucuronidation of retinoids by rat recombinant UDP: glucuronosyltransferase 1.1 (bilirubin UGT).

Rat liver recombinant BR1UGT1.1 was found to have significant activity toward retinoid substrates. UGT1.1 glucuronidation activity was 91 +/- 18 pmol/mg x min for atRA and 113 +/- 19 pmol/mg x min for 5,6-epoxy-atRA. The apparent K(M) and V(max) of atRA acid glucuronidation by UGT1.1 were 59.1 +/- 5.4 microM and 158 +/- 43 pmol/mg x min, respectively. SDS-PAGE and Western blot analysis of UGT1....

متن کامل

Glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by rat UDP-glucuronosyltransferase 2B1.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are potent lung carcinogens in animals. UDP-glucuronosyltransferase (UGT)-mediated glucuronidation of NNAL is a potentially important detoxification pathway for these carcinogens. To identify the UGT isozyme(s) involved in this pathway, we examined the glucuronidation o...

متن کامل

UDP-glucuronosyltransferase isoforms catalyzing glucuronidation of hydroxy-polychlorinated biphenyls in rat.

Polychlorinated biphenyls (PCBs) are highly toxic environmental contaminants that can cause irreversible damage in humans and wildlife. The mechanism of toxicity is not clear, but biotransformation products such as hydroxy PCBs (OH-PCBs) are a major concern. Efforts to elucidate the metabolism of PCBs and their metabolites, however, have paid little attention to the structure of the compound to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 1997